Taking a leap of faith: How young scholars from four MONTRÉAL ASEAN countries forge ahead for successful research careers

<complex-block>

The transformation of Research in the South: policies and outcomes OECD, 21st-22nd January 2016, Paris, France

Organised by IDRC, IRD, U. Paris-Descartes, IFRIS, OECD Development Center

BACKGROUND

- Follow up to the Global State of Young Scientists (GloSYS) 2013 pilot study (PI: Beaudry)
- Project funded by the National Science Technology and Innovation Policy Office (STI) of Thailand
- Project led by
 - Prof Futao Huang (Hiroshima University, Japan
 - Dr. Orakanoke Phanraksa (National Science and Technology Development Agency, NSTDA, Thailand)
 - Prof Catherine Beaudry (Polytechnique Montreal, Canada)
- For the Global Young Academy (GYA), Germany
- One year project: 2015

Global Young Academy The voice of young scientists around the world

Goal: analyse the situation of young researchers and scientists in selected ASEAN countries in the context of multiple challenges in the higher education sector in Asia

Catherine Beaudry – The Transformation of Research in the South

GOAL OF THE ARTICLE

Compare four Asian countries

- Indonesia
- Malaysia
- Singapore
- Thailand
- In regards to the factors that impact
 - Scientific outputs
 - Technological outcomes
 - Commercialization
 - Outreach activities

From the literature, we know very little from the developing world...

AGE – THE EVIDENCE

Some say that scientists do their best work while young

- Einstein, Newton and Gauss are obvious examples
- Younger scientists are more creative (Simonton, 1984 & 1997) and productive
- The young benefit from having a fresher look at some of the old problems (Kuhn, 1962)

Others argue that knowledge matures with age

- Plank, Braun and Cram were in their 40s when they formulated their theories
- Younger scientists are NOT more creative and productive
- The old Mertonian argument suggests that as scientists rise in the hierarchy, they increase their productivity and impact

IN FAVOUR OF YOUNG SCIENTISTS

Younger scientists are generally more productive

- Gieryn, 1981 X-Ray and Radio Astronomy
- Horner, Rushton and Vernon, 1986 psychology (peaks around 40)
- Over, 1988 psychology

Significant contributions (Lehman, 1953) and extraordinary contributions (Zuckerman and Merton 1973; Zuckerman, 1977; Simonton, 1997) of researchers are generally made before their 40th birthday

Stern, 1978 – mathematics

IN FAVOUR OF OLDER SCIENTISTS

- Mid-career and older scientists are more productive and have more impact (Cole, 1979; Kyvik and Olsen, 2008)
 - But highly productive scientists remain productive, but those who produce little, publish even less later on (Allison and Steward, 1974)
 - But no difference is found around 2000 (Wray, 2003 and 2004)
- Older scientists are higher up in the hierarchy (Cole and Cole, 1973), obtain more funding, and hence more graduate students → productivity and impact increases

Hence the good do no necessarily all die young...

Catherine Beaudry – The Transformation of Research in the South

IN FAVOUR OF BOTH

Gingras et al. (2008) show that

- Older professors are more productive
- Younger scientists have more impact (citations)

Over (1988)

Older authors are not more likely to produce high impact publications than younger authors

But very little evidence from developing countries and BRICS

H1 (Age): Older young scientists are more productive in terms of research output

GENDER – THE EVIDENCE

- Women on average publish fewer papers than their male colleagues (Aksnes et al., 2011; Fox, 2005; (political science) Hesli and Lee, 2011; Nakhaie, 2002; Prpić 2002; Xie and Shauman, 1998 and 2003; Zuckerman, 1991)
- Women focus more on research quality than research quality (Sonnert and Holton, 1995)
- Women are generally underrepresented in academia (Neumark and Gardecki, 1998; Xie and Shauman, 2003)
- Diminution in the gender differences as the population of female scientists increases (Abramo et al., 2009a; Xie and Shauman, 1998)
- No gender effect found for biochemists (Long, 1992)
- H2 (Gender): Female researchers are less prolific in terms of scientific output

PUBLIC FUNDING – THE EVIDENCE

- Partha and David (1994), Kleinman and Vallas (2001) argue that institutions and social norms of open science are functionally maximizing the long term growth of scientific knowledge
 - But are not powerful to be socially optimum in terms of producing economic rents and commercial outputs from the existing stock of scientific knowledge
- Pavitt (2000 and 2001) refer to the importance of public support for scientific infrastructure development and highlight its role in the effectiveness of public grants in the US
- Salter and Martin (2001) suggest two distinct forms of justification for granting body to award financial support
 - Lack of instruments and laboratory tools for conducting research
 - Need for hiring new researchers/students or making/expanding of scientific network

PRIVATE FUNDING

- In terms of private funding, Balconi and Laboranti (2006) argue that in applied fields, there are two stages for the establishment of a new technology
 - First, the discovery of new avenues for potential commercial activities
 - Second, the realisation of these possibilities by developing new industrial products via answering to the specific research question
- Geuna and Nesta (2003) claim that increased industrial funding will force researchers to
 - Shift to more applied research
 - Neglecting their normative responsibilities for knowledge development

PUBLIC VS PRIVATE FUNDING

- Entrepreneurial university (Etzkovitz, 2003) starts with entrepreneurial academics and possibly with academic inventors (→patents)
 - Concern that universities may concentrate more on 'private' research rather than science as a public good (Dasgupta and David, 1987, 1994)
 - Trade-off between publishing and patenting (Azoulay et al, 2006; Breschi et al., 2007; Owen-Smith and Powell, 2003; Stephan et al., 2007; Thursby and Thursby, 2002) ?
 - Anti-commons argument (Heller and Eisenberg, 1998; Murray and Stern, 2007)
- Geuna (2001) argues that the fading role of public funding can result in
 - Over-use of resources
 - Focus on short-term research endeavor
 - Conflict in incentive structures
 - "Exacerbation of the impact of cumulative and self-reinforcement phenomena present in the process of scientific production" (pp. 626)

FUNDING HYPOTHESES

- H3 (Funding): Researchers with a higher proportion of funding from
 - (a) public national organizations
 - will also generate more scientific output
- while researchers with a higher proportion of funding from
 - (b) private organizations or
 - (c) philanthropic organizations
 - will generate more technological output

COLLABORATION – THE EVIDENCE

- Positive effect on scientific production of more central scientists in more cliquish networks (Beaudry and Allaoui, 2012)
- Not detrimental to the quality of publications (Godin and Gingras, 2000)
- Interdisciplinary fields are more conducive to collaboration (Abramo et al., 2009)
- Probability of collaboration of two scientists increases with the number of their common collaborators (Newman, 2001)

COLLABORATION – NETWORKING

- Networking (Godin and Gingras, 2000; Chwe, 2000; Hicks, 1995; Johnes, 1988; Melin,1996; Azoulay et al., 2007; Abramo et al., 2009; Ynalvez and Shrum, 2011; Newman, 2001a, b; Beaudry and Allaoui, 2012; Cowan and Jonard, 2003&2004; Cowan and Jonard, 2003; Newman, 2004; Katz, 1994)
- H4 (Collaboration): Researchers who collaborate will also generate more research output

Catherine Beaudry – The Transformation of Research in the South

METHODOLOGY (I/II)

- Based on a questionnaire (tested in 2013 for Thailand amongst other countries)
 - Corrections were made and questions were added
 - But the core of the questionnaire remains relatively unchanged
 - The questionnaire was re-tested on a restricted sample in order to validate the changes and the new questions in the four countries of interest
- Four countries were initially targeted:
 - Indonesia
 - Malaysia
 - Singapore
 - Thailand

METHODOLOGY (II/II)

- Team members and colleagues contacted the main research institutions, both public and private
 - Access to email lists of young researchers
- Questionnaire sent to all these young researchers, with a reminder two weeks later
- The questionnaire was launched in two phases
 - 218 responses in April-June 2015
 - 534 responses in July-September 2015 (significant respondent fatigue problem → only 325 valid responses)
 - Tests to compare the two samples showed no significant differences between the two groups for the main variables of interest

DATA

- Out of the 557 responses deemed valid, 543 remained once observations for which key variables were missing were removed
- Our sample is therefore composed of
 - 68 researchers currently working in Indonesia
 - 189 researchers in Malaysia
 - 45 in Singapore, 255 in Thailand
 - 25 in developed countries
 - 13 in the rest of the world
 - 273 men and 270 women
 - Serious overestimation of the number of female doctoral holders

Age ~36

DATA

- 62.3% of men (53.3% of women) are in a relationship
- Men have on average 0.78 children and women 0.72
- 68% of Malaysian researchers are in a relationship and have 1.07 children while 39% of Thailand researchers are in a relationship and have 0.28 children
 - Thailand researchers are 1.6 years older (36.7) than their Malaysian colleagues

In(nbArtChapConf+1)	(Art-1)	(Art-2)	(Art-3)	(Art-4)	(Art-5)	(Art-6)	(Art-7)
dFemale	-0.0386	0.0787	0.4415		-0.0566	-0.0481	-0.0324
PhDAge	-0.0036	-0.0035	-0.0040	-0.0029	-0.1506 **	0.1613*	-0.4452**
In(<i>nbChildren</i> +1)	0.2501***	0.3848 ***	0.2502 ***	0.2561***	0.2292 ***	0.2391***	0.2512***
dIndonesia	0.3049	0.3003	0.3037	0.2883	0.3353	0.3127	0.2341
dMalaysia	0.6688***	0.6862 ***	0.6670 ***	0.6511***	0.6983 ***	0.6782***	0.6247***
dSingapore	-0.2372	-0.2395	-0.2351	-0.2596	-0.1953	-0.2772	-0.3285
dThailand	-0.0810	-0.0705	-0.0811	-0.0933	-0.0685	-0.0920	-0.1396
_dOther	0.4450	0.4680	0.4563	0.4483	0.4683	0.4471	0.4491
1/(propHoursTeach+1)	-0.8918*	-0.8682 *	-0.9143 *	-0.9080*	-1.8547 ***	-0.9640*	-0.8696*
1/(propHoursResearch+1)	-0.0618	-0.0238	0.2378	-0.0753	0.0941	0.9436	0.0238
1/(propHoursCons+1)	0.1304	0.1170	0.1603	0.1200	0.2351	0.0893	0.1565
1/(propHoursFund+1)	-0.5100	-0.4511	-0.5360	-0.4742	-0.3456	-0.6276	-3.0631**
PropSelfHousework	0.0009	0.0013	0.0008	0.0009	0.0015	0.0011	0.0010
1/(FundNational+1)	-0.1309	-0.1219	-0.1345	-0.1322	-0.1000	-0.1215	-0.1004
1/(FundPrivate+1)	-0.2249*	-0.2102 *	-0.2160 *	-0.2271*	-0.2100 *	-0.2120*	-0.2295*
1/(FundPhil+1)	-0.0669	-0.0617	-0.0595	-0.0584	-0.1264	-0.0684	-0.0645
1/(FundInt+1)	-0.4286***	-0.4345 ***	-0.4336 ***	-0.4389***	-0.4384 ***	-0.4184***	-0.4146***
dMobility	0.0182	0.0019	0.0224		0.0423	0.0496	0.0503
CollForeign	0.0543	0.0540	0.0537	0.0523	0.0546	0.0509	0.0522
CollNational	0.1717***	0.1736 ***	0.1765 ***	0.1749***	0.1714 ***	0.1789***	0.1749***
dFemale x ln(nbChildren)		-0.2684 *					
dFemale x 1/(PropHoursResearch+1)			-0.6622				
MobileMen				-0.0636			
NonMobileWomen				-0.1423			
MobileWomen				-0.0533			
PhDAge x 1/(PropHoursTeach+1)					0.1951 **		
PhDAge x 1/(PropHoursResearch+1)						-0.2140*	
PhDAge x 1/(PropHoursFund+1)							0.4639**
Number of observations	338	338	338	338	338	338	338

Catherine Beaudry – The Transformation of Research in the South

21 January 2016 19

			<u> </u>	<u> </u>			
In(nbArtChapConf+1)	(Art-8)	(Art-9)	(Art-10)	(Art-11)	(Art-12)	(Art-13)	(Art-14)
dFemale	-0.0377	-0.0394	-0.0418	-0.2806**	-0.0188	-0.0408	
PhDAge	-0.0035	-0.0038	-0.0038	-0.0152	0.0362	-0.0034	-0.0036
dChildren						0.2723 ***	
In(<i>nbChildren</i> +1)	0.2506 ***	0.2523***	0.2545 ***	0.2367***	0.2498 ***	¢	
dindonesia	0.3057	0.3251	0.2882	0.3125	0.3084	0.3181	0.3219
dMalaysia	0.6682 ***	0.6598***	0.6412 ***	0.6929***	0.6908 ***	* 0.6841 ***	0.6970 ***
dSingapore	-0.2428	-0.2239	-0.2530	-0.2201	-0.1876	-0.2218	-0.2215
dThailand	-0.0828	-0.0555	-0.1016	-0.0960	-0.0894	-0.0743	-0.0628
dOther	0.4408	0.4674	0.4025	0.4377	0.4619	0.4534	0.4751
1/(propHoursTeach+1)	-0.8895 *	-0.8997*	-0.8940 *	-0.9542*	-0.9504 *	-0.9010 *	-0.8632 *
1/(propHoursResearch+1)	0.1974	-0.0167	-0.0813	0.0337	-0.0085	-0.0862	-0.0674
1/(propHoursCons+1)	0.1227	0.1159	0.0975	0.2128	0.1440	0.1333	0.1453
1/(propHoursFund+1)	-0.5362	-5.0942**	-4.1358	-0.4823	-0.4973	-0.4650	-0.4336
PropSelfHousework	0.0010	0.0011	0.0009	0.0011	0.0011	0.0010	0.0012
1/(FundNational+1)	-0.1297	-0.1413	-0.1288	-0.1123	-0.1309	-0.1244	-0.1159
1/(FundPrivate+1)	-0.2256 *	-0.2508**	-0.2291 *	-0.2271*	-0.2288 *	-0.2282 *	-0.2227 *
1/(FundPhil+1)	-0.0681	-0.0924	-0.0536	-0.0938	-0.0894	-0.0497	-0.0466
1/(FundInt+1)	-0.4333 ***	-0.4120***	-0.4130 ***	-0.4223***	-0.4477 ***	* -0.4509 ***	-0.4502 ***
dMobility	0.0188	0.0212	0.0148	0.0598	0.0369	0.0040	-0.0061
CollForeign	0.1324	-1.6375**	0.0554	0.0543	0.1507 *	0.0623	0.0642
CollNational	0.1703 ***	0.1723***	-0.7713	0.1736***	0.1469	0.1651 ***	0.1632 ***
CollForeign x 1/(PropHoursResearch+1)	-0.1111						
CollForeign x 1/(PropHoursFund+1)		1.7453**					
CollNational x 1/(PropHoursFund+1)			0.9636				
dFemale x PhDAge				0.0483**			
PhDAge x CollForeign					-0.0254 **		
Men_with_children							0.3535 ***
ChildlessWomen							0.0209
Women_with_children							0.2261 *

DISCUSSSION

- No gender difference in noted on the number of articles, chapters and conference presentations
- When we interact gender with the number of years since PhD graduation (PhDAge)
 - being female has a negative effect on research output
 - but having graduated for a longer period slightly offsets this negative impact
 - without completely cancelling the impact
 - \rightarrow the overall impact is negative for women

DISCUSSION

- Having children is generally associated with greater productivity (both counting the number of children, or simply accounting the fact of having children)
 - Women with a greater number of children are however less productive than men with an equal number of children
- If a researcher receives a higher proportion of funds from international sources however,
 - He is also likely to be more prolific
- A higher proportion of private funding has a similar impact

CONCLUSION

Neither PhDAge, nor Age, were ever significant

- H1 (older young scientists are more prolific) is not validated which is not surprising considering the fact that our sample is composed mainly of young scientists
- H2 (female researchers are less prolific) is rejected once we account for a variety of factors that influence scientific production
 - Women who have more children are less productive than their male counterpart
 - Having children is however associated with a degree of maturity that we do not successfully capture with either Age or PhDAge

CONCLUSION

- Our funding variables only highlight the importance of private funding and of international funding for research output
 - Hypotheses H3a (scientific output) and H3b-H3c (technological output) are all rejected
- H4 is always supported
 - Hence validating the close relationship between collaboration and research output of any kind

FUTURE WORK

Take into account country discrepancies

- Thailand has 30% of researchers in Research institutions
- Malaysia has 95% of its surveyed researchers in universities and higher education institutions
- Improve the response rate in Indonesia and Singapore?
- Explore creativity and innovation personality traits
- Match questionnaire-based information with full bibliometrics analysis
 - Use information from the corresponding author email address

POLYTECHNIQUE Montréal

Catherine Beaudry – The Transformation of Research in the South

GLOSYS-ASEAN PROJECT

- Funding provided by the National Science Technology and Innovation Policy Office (STI)
- Principal Investigator : Prof Futao Huang (Hiroshima University, Japan)
- Co-Principal Investigators
 - Prof. Catherine Beaudry (Polytechique Montreal, Canada)
 - Dr. Orakanoke Phanraksa (National Science and Technology Development Agency, NSTDA, Thailand)
- Co-ordination of the research activities:
 - Kasama Kongsamak (NSTDA, Thailand)
 - Pattranooj Saengchantr
 - Dr. Johannes Geffers (GYA, Germany)
- Research working group members (GYA members):
 - Dr. Karen Lorimer, Glasgow Caledonian University, Scotland
 - Dr. Martin Dominik, University of St Andrews, Scotland
 - Dr. Mitsunobu Kano, Okayama University, Japan
 - Dr. Shoji Komai, Nara Institute of Science and Technology, Japan15
 - Dr. Hsin-Chou Yang, Academia Sinica, Taiwan

GLOSYS-ASEAN REGIONAL SUB-PROJECTS

Indonesia

- Dr. Vanny Narita, National Innovation Council of the Republic of Indonesia
- Malaysia
 - Young Scientists Network Academy of Sciences Malaysia (the National Young Academy of Malaysia), namely
 - Prof Dr Ramesh Subramaniam University of Malaya (GYA member)
 - Dr. Normi Mohd Yahaya Universiti Putra Malaysia (GYA and YSN-ASM member)
 - Prof Dr. Basyaruddin Abdul Rahman Universiti Putra Malaysia (GYA alumni and YSN-ASM Chair)
 - Assoc Prof Dr Abhimanyu Veerakumarasivam Perdana University (YSN-ASM Vice Chair)
 - Dr. Zainovia Lockman Universiti Sains Malaysia (YSN-ASM International Networking Working Group Chair)
 - Prof. Dr. Cheong Sok Ching Cancer Research Initiatives Foundation (YSN-ASM Research Leadership Working Group Chair)

Singapore

Representative from National University of Singapore

Thailand

- Dr. Orakanoke Phanraksa, NSTDA
- Dr. Wibool Piyawattanametha, KMITL
- Office of Higher Education Commission (OHEC)

