The transformation of research in the South: policies and outcomes

Strengthening the interactive capabilities of public research institutes: a case study of science councils in South Africa

Glenda Kruss OECD Paris, January 2016

ELESEC Human Sciences Research Council

The presentation

Examines how 5 science councils evince the 'interactive capabilities' to respond to demands of accountability to complex growth/development agendas

- A focus on national policy and organisational practice:
 - How organisational mandates are reinterpreted to respond to multiple imperatives, and the internal and external interface structures and mechanisms to promote and support interaction with public and private partners
 - How conditions in the NSI drive change, but may constrain building of interactive capabilities
- => Intervention at national policy and organisational levels?

A policy-oriented literature

Growing body of research from innovation policy makers: how PRIs can play more effective role in economic development and how form more effective linkages with government, private sector and other knowledge actors.

 Reflected in academic literature in a number of countries: grappling with shifts in compact between knowledge institutions, public and private users and society

=> Contribute to this literature through examination of dynamics in SA context

Analytical framework

Builds on and extends research on university-firm interaction in the South (Albuquerque et al 2015)

- Focus on substantive nature of universities and PRIs:
 - Substantive growth: driven by disciplinary fragmentation and complexity, change
 - Reactive growth: driven by government policy or labour/market demands
- Scientists: intellectual, financial and 'social development' imperatives drive interaction
- ⇒Ability of PRI to respond to change, flexible in how organises, is critical

Anamic interactive capabilities

"the ability to learn from such interaction and to absorb the lessons and then to 'recycle' their products into the system" (Von Tunzelmann 2007, 2010).

- Capability of PRIs to build linkages to ensure flows of knowledge and technology between actors in the NSI
- Will to interact: reflected in mandates and strategic policy
- Capacity to build linkages: internal and external interface structures and mechanisms to promote and support interactive activities of scientists

Methodology

In depth qualitative case studies of five science councils

- Macro-level:
 - Analysis of government policy documents and literature to situate in context of history and expectations
 - SETI reviews to triangulate history and organisational data
- Meso-level:
 - Semi-structured interviews with senior managers, heads of units (November 2012-October 2013)
 - Analysis of documentary sources

Historical trajectory and policy imperatives

- Dynamic interactive capability shaped by practices and priorities built up over time
- ⇒ Formal establishment in response to economic and political challenges in distinct periods?
 - 1. Colonial origins, agricultural and mineral demand
 - 2. Industrialisation and big science
 - 3. Marketisation and public accountability
- 1994: radically new policy mandate requires reorientation and change:
 - 1. Contribute to science and connect to global knowledge systems
 - 2. Technology, innovation for global competitiveness and inclusive growth
- 3. Innovation of government and communities for inclusives socioeconomic development Social science that makes a difference

now do science councils balance multiple imperatives?

Each articulated a distinctive balance of the threefold mandate in relation to their core disciplinary fields and research paradigms

- Grappled to balance simultaneous (and potentially contradictory) demands of financial, intellectual and developmental imperatives driving activity:
 - Tensions acute, expanded strategic mandate and agency role (repositories) a challenge, in financially constrained environment (CGS, ARC, MRC)
 - Clearer mandates where linked to mining and industrial value chains, but oriented more strongly to global competitiveness and scientific excellence, and driven more strongly by financial imperatives (Mintek, CSIR)

	CSIR: Multi-	Mintek Mission	CGS Mission	ARC Mission	MRC Mission
	disciplinary, perform	perform	geology, perform, repository	AGRICULTURE perform, repository	HEALTH perform, fund
Traditional	Research and	Maximise the value	Survey for	Commodity	Medical model:
mandate	technological	derived from mineral	government and	oriented: serve the	causes and
	innovation to	resources	public	needs of agriculture	treatment of
	foster industrial,			sector	disease
	scientific				
	development				
Main	Impact of R&D	Expanded mandate:	Expanded	Expanded	Health paradigm
challenge	and technology	small-scale miners	mandate:	mandate: small	responds to main
to shift	transfer	Strengthen scientific	geohazards	farmers	causes of ill-
traditional	Strengthen	reputation	Develop scientific	Develop scientific	health
manuale	scientific		reputation	reputation	Scientific
	reputation				reputation
Funding	Funding drives	Research for	Core mandate as	Small farmer	Balance of
challenge	research agenda	stakeholders versus	geoscience survey	mandate,	funding to intra-
(Ave 30%		public good	requires sustained	repositories need	and extramural

mechanisms to promote balance and coordination

Hybrid organisational models evolved over time

- Matrix system at Mintek
- CSIR: fragmented => new research impact areas, flagship programmes, strategic initiatives, multidisciplinary collaboration
- Missing internal interfaces tacit and ad hoc, unstructured, based on individual relationships, CGS/ARC/MRC =>Fragmentation and lack of coherence and coordination between units, priorities

=> Models most structured and formalised with strategic mix of centralised and decentralised structures and decision-making mechanisms supported interaction to achieve strategic mandates more effectively

knowledge and industry partners

- Formal contracts and MoUs around staff exchange and post-graduate education with universities (intellectual imperatives and global scientific mandate)
- Formal mechanisms for technology transfer, commercialisation and IP with industry partners (financial imperatives and competitiveness mandate)
- Repositories, regional offices, sales of products interfaces with clients and public to meet agency mandate
- Specific programme or unit (small business development, training and extension) with community, civil society and informal sector – missing structures, lack of integration

entive mechanisms tend to reward the scientific mandate

Performance monitoring and promotion systems include criteria to promote interaction BUT balance between output indicators contested, systems not transparent and changed frequently

- Publications and contribution to science rewarded most highly
- Few incentives to reward patents or commercialisation, or interaction with small-scale producers and communities
- ⇒ In practice, most scientists driven by individual or unit interpretation of imperatives for intrinsic reward: "freedom to pursue one's research"

 \Rightarrow Substantive growth drives interaction most strongly

Systemic conditions in the NSI constrain

Macro-level blockages constrain, despite best organisational efforts

- . Decline in core public grants => Financial imperatives drive scientists to seek private funding
 - Risk of funder driven research agendas => organisational incoherence and misalignment
 - Constrain solutions in public interest
 - Block funds for infrastructure and equipment/ maintenance of national collections
 - Lack of continuity risk to long term scientific work
- 2. Mission overload: initiatives from multiple government policy actors, constant cumulative addition of requirements without prioritisation, alignment or coordination; risk of duplication and fragmentation of effort
- 3. Potential risk for fundamental knowledge and technology generation capacity of science councils in NSI

owards a stronger strategic balance

fore effective balance of threefold mandate around core substantive role?

- Convince scientists of potential value of interaction
- Draw on HE community engagement frameworks of "engaged scholarship" – national debate to promote 'engaged science and technology'

2.Enhance **dynamic interactive capabilities**: science councils as active agents, balance functions in more strategic manner to manage potential tensions between multiple imperatives:

- Strengthen internal coordination and alignment between business units and strategic goals
- Prioritise and give authority to structures and mechanisms that support interaction
- Incentives to promote individual will to interact and align strategically

3.Develop capabilities to interact with marginalised and vulnerable communities and informal sector actors:

 Strategy aligned with existing mechanisms and funding, to extend benefits of research and technology towards inclusive development